Highlights from BNL

New Phenomena at RHIC

T. Ludlam
Erice
Aug. 29 – Sept. 7, 2003

New forms of matter at RHICWhat are we trying to understand?

What is the behavior of matter at asymptotic energy density?

Quark Gluon Plasma ε≥ 1 GeV/fm³

Early universe, neutron stars

Is there a universal initial state of matter in the high energy limit of strong interactions?

Color Glass Condensate $\rho \ge 1 \text{ GeV/fm}^2$

The Quark Gluon Plasma

The QCD phase transition:

Critical temperature: $150 - 200 \text{ MeV } (\mu_B = 0)$

Critical density: $\frac{1}{2}$ - 2 Baryons/fm³ (T = 0)

Critical energy density: ~1 GeV/fm³

What does QCD predict? Lattice Gauge Simulations

Deconfinement:

N_{dof} changes by Order of magnitude **Chiral Symmetry:**

$$m_{up}, m_{down} \approx 0$$

 $M_{nucleon} \approx 1 \text{ GeV}$

How do particles get their mass?
Are confinement and chiral symmetry related?
What is the equation of state?

A Mini-Bang:

Nuclear matter at extreme temperatures and density

Colliding nuclei at 100 + 100 GeV/nucleon

Using heavy ions to excite the QCD vacuum on a large scale

What can we measure?

The large RHIC detectors: PHENIX and STAR

NIM Volume 499 (2003), Nos. 2-3: Special volume on the RHIC Machine and Detectors

STAR: The "Visual" Imaging Detector

- 0.5T Solenoidal Magnet
- Time Projection Chamber... 2m radius x 4m long; 140,000 pad readout x 512 time samples dE/dx in 1 atm. P-10 gas total drift time = 40 μ S
- Silicon Vertex Tracker
- Electromagnetic Calorimetry

Central Au-Au collision in the **Time Projection Chamber**

PHENIX Detector

Measure

- Photons
- Electrons
- Muons
- Hadrons

in

- Two Central Arms
- Two Muon Arms

PHOBOS uses silicon Detectors almost exclusively:

"Rapid response" with ~full coverage in Pseudo-rapidity.

BRAHMS: Two moveable spectrometer arms sample particles from one set of angles at a time, with high precision over nearly full range of rapidity.

Geometry of nuclear collisions: Centrality

Use combination of

- Zero degree calorimeters
- Beam-Beam counters
 To define centrality classes.

Use Glauber modeling to extract the impact parameter; number of participating nucleons (N_{part}); number of binary collisions (N_{coll}). These are not directly measurable.

Central Au-Au collision: A Mini-Bang?

Initial energy density >10 GeV/fm³ over a volume of ~1000 fm³

Anatomy of a [central] RHIC collision

Surveying the landscape at "freeze-out"

Particle abundance ratios fit to thermal model:

Temperature ~177 MeV: $\approx T_C$ from lattice QCD calculations

Baryon chemical potential approaching zero

Thermodynamics of strong matter

- It's hot enough...
- It's dense enough...
- Is it "matter" (thermal)?
- Is it "quark matter" (partons in thermal equilibrium)?

Lattice QCD calculations: T_{critical} ~ 150 – 180 MeV

See F. Karsch, Nucl. Phys. A698, 199c

Spin at RHIC

High Energy collisions of polarized protons:

- Measure the gluon contribution to the spin of the nucleon.
- Flavor decomposition of the proton's spin.

Polarized Proton Collisions in RHIC

- First colliding beams of polarized protons achieved in 2002
- First data with longitudinally polarized beams (spin rotators) in 2003
- Full Spin capability for machine and detectors will ramp up through 2005

A brief aside... Vernon Hughes at BNL

A pioneer in the development of spin-polarized beams, targets, and fundamental research at many labs around the world, Vernon was actively involved in the implementation of Spin capability in the RHIC collider— and was a leader in developing plans for the future electron-ion collider eRHIC.

The Muon G-2 Experiment at BNL

PRL **89** 101804 (2002)

"A sum rule for present physics" V. Hughes

Are we seeing QGP at RHIC?

First question: do we have "Matter" at high energy density?

Strong collective interaction; local kinetic equilibrium...

Large volume compared with mean free path?

Anisotropic Flow

Is it quarks and gluons?

- Temperature and energy density well above critical values?
- Strong collective interaction at very early times?
- Color screening in dense phase?
- Opaque to jets?

Is there a phase transition?

- Chiral symmetry restored (shifted ρ mass)?
- Lattice predictions for the equation of state (latent heat)?
- Fluctuations near phase boundary?

Elliptic (anisotropic) Flow- Direct measure of collective interaction

A "barometer" that probes early-time thermalization

Coordinate space: initial asymmetry

Multiple collisions (pressure)

Momentum space: final asymmetry

Directed Flow $\frac{d^3N}{dp_t \, dy \, d\varphi} = \frac{d^2N}{dp_t \, dy} \frac{1}{2\pi} (1 + 2v_1 \cos(\varphi) + 2v_2 \cos(2\varphi) + ...)$

Momentum anisotropy w.r.t. the reaction plane:

Interactions among constituents generate a pressure gradient, which transforms the initial coordinate space anisotropy into a momentum space anisotropy (no analogy in pp)

Measured elliptic flow vs. charged particle density

For RHIC collisions with highest particle density in the overlap region: Elliptic flow approaches the hydrodynamic limit

Hard Scattering at RHIC

cross sections are high!

 $Au+Au \rightarrow ???$

(STAR 200 GeV/nucleon)

High P_t Data

Well measured, as function of centrality, to $p_t > 10$ GeV/c. Calibration data from p – p collisions in the same detectors.

Clear suppression in central Au-Au relative to p – p at large p_t

Jet Quenching?

- Hard scatterings in nucleon collisions produce jets of particles.
- In the presence of a colordeconfined medium, the partons strongly interact (~GeV/fm) losing much of their energy via gluon Bremsstrahlung.
- "Jet Quenching"... strong dependence of ΔE on gluon density

See: M. Gyulassy, I. Vitev, X.N. Wang, B.W. Zhang, "Jet Quenching and Radiative Energy Loss in Dense Nuclear Matter", published in *Quark Gluon Plasma 3*, R.C. Hwa and X. N. Wang, editors, World Scientific, Singapore, 2003.

Suppression of leading hadrons in RHIC data

$$R_{AA}(p_T) = \frac{d^2 N^{AA} / dp_T d\eta}{T_{AA} d^2 \sigma^{NN} / dp_T d\eta}$$

 $\sqrt{S_{nn}}$ =200: Au+Au

Inclusive π^0 in central & peripheral collisions

STAR Charged hadrons: Dependence on centrality

From SPS to RHIC: A major qualitative change at high p_t

Cronin Effect:

A recent survey of Cronin effect in protonnucleus collisions: A. Accardi, hep-ph/0212148.

Jets and two-particle azimuthal distributions

$$p+p \rightarrow dijet$$

- trigger: highest p_T track, p_T>4 GeV/c
- $\Delta \phi$ distribution: 2 GeV/c<p_T<p_T^{trigger}
- normalize to number of triggers

Azimuthal distributions in Au+Au

Near-side: peripheral and central Au+Au similar to p+p

Strong suppression of back-to-back correlations in central Au+Au

Gluon Saturation and Color Glass Condensate

A new, emerging view of AA physics:

Not everything happens in the final state... "A lot of action is going on even before the nuclei collide" (Kharzeev, McLerran & Co.)

In this picture ... Jets are not quenched, but are *a priori* made in fewer numbers due to saturation of initial-state gluon density.

Is suppression an initial or final state effect?

The verdict is in...

Deuteron-gold data at $\sqrt{S_{nn}}$ = 200 GeV recorded Jan – Mar 2003

STAR charged hadrons

PHENIX pi-zeros

Phys. Rev. Lett. 91, Aug. 2003 nucl-ex/0306021 (PHENIX); nucl-ex/0306025 (PHOBOS); nucl-ex/0307003 (BRAHMS); nucl-ex/0307007 (STAR)

The data indicate a hot, dense medium of final state particles that is characterized by strong collective interactions at very high energy densities.

Are we seeing QGP at RHIC?

First question: do we have "Matter" at high energy density?

• Strong collective interaction; local kinetic equilibrium... Yes Large volume compared with mean free path?

Is it quarks and gluons?

- Temperature and energy density well above critical values?
- Strong collective interaction at very early times?
- Color screening in dense phase?
- Opaque to jets?

Is there a phase transition?

- Chiral symmetry restored (shifted ρ mass)?
- Lattice predictions for the equation of state (latent heat)?
- Fluctuations near phase boundary?

There is a lot more to learn, but at this point it appears that the answer is **Yes**.

The Emerging Picture

Estimates of energy density vs. time during the evolution of a collision.

Predicted sequence of states of QCD matter.

Soon to come... J/ψ (PHENIX)

Soon to come... open charm (STAR)

Deuteron-Gold data

Measurements Beyond the Initial Exploratory Phase

Extended machine & detector capability at RHIC

```
High P<sub>t</sub> and Q<sup>2</sup>:
   Direct photons to P_t > 15 \text{ GeV/c}
   Photon-tagged jets... jet tomography
   Low x, high Q<sup>2</sup> in pA... Probe color glass
Rare probes:
   Many x1000 upsilons
   W production in AA pA pp
Very large unbiased event samples:
   Open Charm and Beauty
   Low mass lepton pairs... p mass spectrum
   Low P, Direct Photons
                                    Direct EM radiation from plasma
   yy interferometry...
   Disoriented Chiral Condensate; Strong CP violation
```

A new regime of yet higher energy density at LHC